S1 HOLIDAY NOTES AND EXERCISE

INSTRUCTIONS

- Working with your parents or Gaurdians read the notes and follow the steps to construct the worked example given.
- -After understanding the example, attempt the practice questions given in the rectangular box in the top of each page.
- present the work on reporting day for marking.

THE VIRUS CAN NOT DEFEAT HUMANITY: WE SHALL BEAT IT SOON. Stay safe and see you again soon.

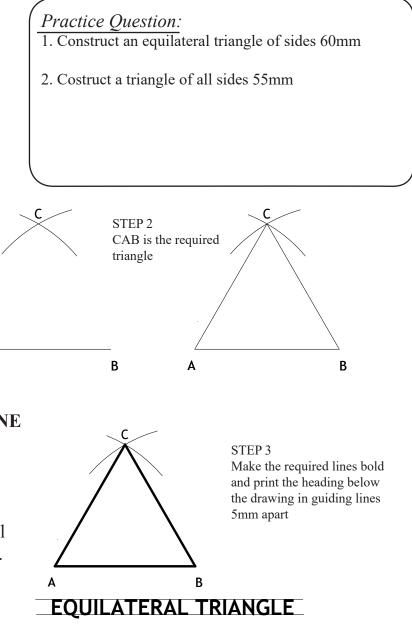
TRIANGLES

The triangle is a plane figure bounded by three straight sides.

TYPES OF TRIANGLES

- 1. *A scalene triangle:* This is a triangle with three unequal sides and three unequal angles.
- 2. *An isosceles triangle:* This is a triangle with two sides and hence two angles equal.
- 3. *An equilateral triangle:* This is a triangle with all sides, and hence all the angles, equal.
- 4. *A right angled triangle:* This is a triangle containing one right angle. The side opposite the right-angle is called the hypotenuse.

Draw line AB equal to length of sides (40mm). With compass radius open to distance AB make arcs from A and then B to intersect at point C above line AB.


Α

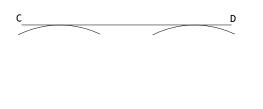
3.1 EQUILATERAL TRIANGLE GIVEN ONE

SIDE

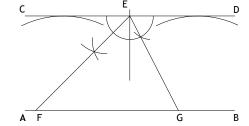
STEP 1

Example: Construct an equilateral triangle of sides 40mm.

3.2 TRIANGLE GIVEN THE BASE ANGLES AND ALTITUDE


Example:

Α

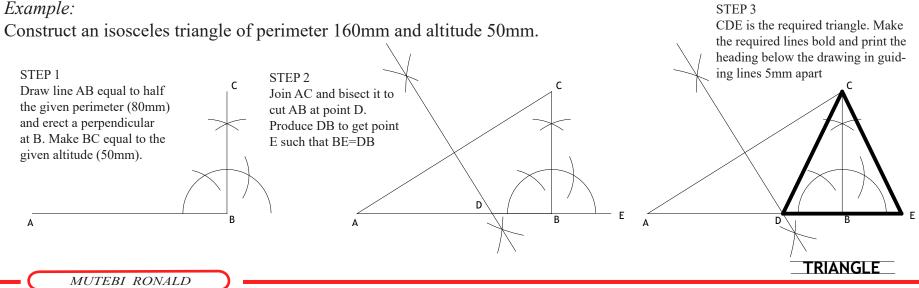

Construct a triangle of altitude 40mm and base angles 60° and 45°

STEP 1

Draw line AB and then construct CD parallel to AB so that the distance between them is equal to the given altitude (40mm).

STEP 2 From any point E on line CD, construct the two base angles (CEF= 45° and DEG= 60°) to cut Line AB at points F and G

Practice Question:


- 1.a) Construct a triangle of of altitude 30mm and base angles 75° and 37.5°.
 - b) Measure and state the length of the base of the triangle above.
- 2. Construct an isosceles triangle that has a perimeter of 150mm and altitude 40mm

STEP 3

EFG is the required triangle. Make the required lines bold and print the heading below the drawing in guiding lines 5mm apart A F G

3.3 ISOSCELES TRIANGLE GIVEN THE PERIMETER AND THE ALTITUDE

TRIANGLE

D

в

3.4 ISOSCELES TRIANGLE GIVEN THE LENGTH OF THE BASE AND PERPENDICULAR HEIGHT (ALTITUDE)

Example:

STEP 1

point D

Draw line AB equal

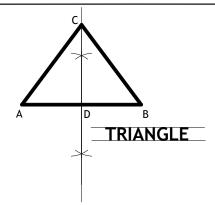
to given base length

(40mm). Bisect AB to get

Δ

D

R


Construct a triangle of altitude 30mm and base 40mm

Practice Question:

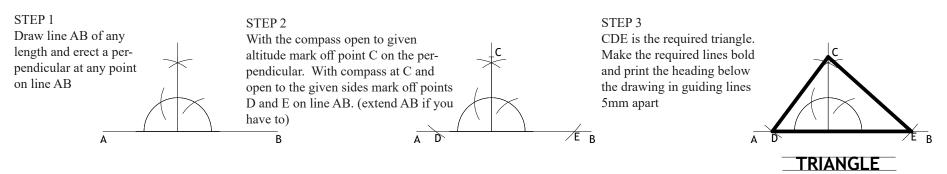
- 1.Construct a triangle of altitude 45mm and base lenth 50mm
- 2. Construct a triangle of altitude 30mm and sides 45mm and 55mm.

CAB is the required triangle. Make the required lines bold and print the heading below the drawing in guiding lines 5mm apart

STEP 3

3.5 TRIANGLE GIVEN THE LENGTH OF TWO SIDES AND THE ALTITUDE

STEP 2


With the compass at D and open to distance equal to

given altitude (30mm),

mark off point C.

Example:

Construct a triangle of altitude 40mm and and sides 50mm and 60mm.

D

В

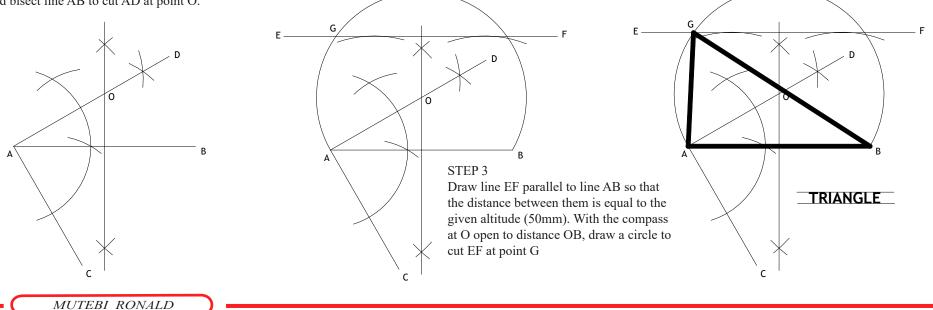
An illustrated approach to TECHNICAL DRAWING - Book 1

3.6 TRIANGLE GIVEN THE BASE, ALTITUDE AND THE VERTICAL ANGLE

Example:

Construct a triangle of base 80mm, altitude 50mm and vertical angle 60°.

Α


C

STEP 1

Draw line AB equal to given base (80mm), then construct angle BAC equal to given vertical angle (60°).

STEP 2

Erect line AD perpendicular to line AC and bisect line AB to cut AD at point O.

В

- 1.Construct a triangle with base of 55mm, and altitude of 62mm and a vertical angle of 37.5°
- 2. Construct a triangle with a base measuring 62mm, an altitude of 50mm and a vertical angle of 75°.

GAB is the required triangle. Make the required lines bold and print the heading below the drawing in guid-

STEP 4

ing lines 5mm apart

Draw line AB equal to given

perimeter (150mm) and divide it into the given ratio (4:3:4). see Ex. 2.8 on how to divide a line into a given ratio. This gives you points C and D on line AB.

4

With center C and compass radius CA draw an arc. Then

with center D and compass radius DB draw another arc to intersect the first one at

3

3.7 TRIANGLE GIVEN THE PERIMETER AND THE RATIO OF THE SIDES

Example:

STEP 1

STEP 2

point E.

Construct a triangle of perimeter 150mm and sides in the ratio of 4:3:4

4

4

D

3

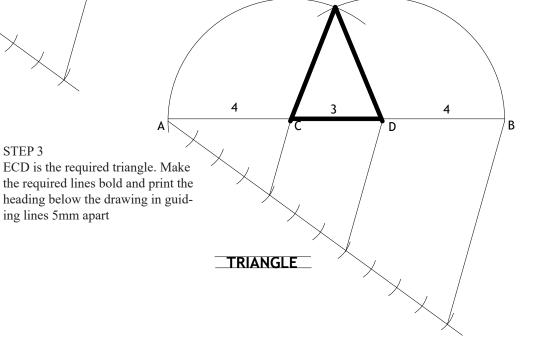
В

ſ

4

D

STEP 3


В

An illustrated approach to TECHNICAL DRAWING - Book 1

Practice Questions:

- 1. Construct a triangle with a perimeter measuring 160mm and sides in the ratio 3:5:6.
- 2. Construct a triangle with a perimeter of 125mm whose sides are in the ratio 2:4:5.

Ε

MUTEBI RONALD

Chapter 3: TRIANGLES

Construct angle CBA equal to

make the length of CB and AB

the given vertical angle (30°) and

equal to half the perimeter (70mm)

3.8 TRIANGLE GIVEN THE PERIMETER, THE ALTITUDE AND THE VERTICAL ANGLE

Example:

STEP 1

А

STEP 4

Construct a common internal tangent between

the two circles to cut line

F. (see Ex 7.5 about con-

structing tangents)

AB at D and cut line BC at

Construct a triangle of perimeter 140mm, altitude 30mm and vertical angle 30°

STEP 2

B

D)

Tangent

Α

An illustrated approach to TECHNICAL DRAWING - Book 1

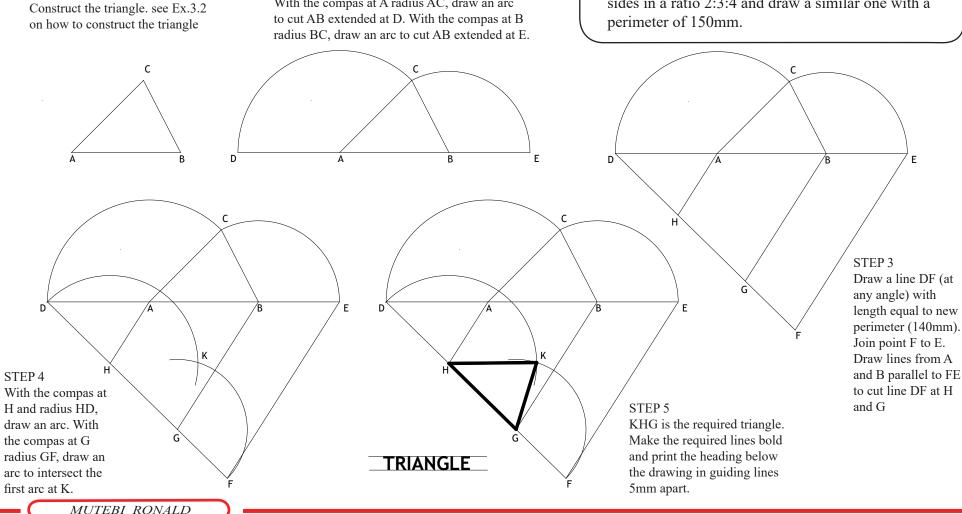
Practice Questions: 1.Construct a triangle with a perimeter measuring 115mm altitude 40mm and the vertical angle is 45° 2. Construct a triangle with a perimeter of 130mm, vertical angle 75° and altitude 45mm. STEP 3 Erect perpendiculars at C With center O and radius and A to meet at point O OC (= OA) draw a circle. Then with center B radius equal to given altitude (30mm) draw another circle В B Α Tangent n D STEP 5 FDB is the required triangle. Make the required lines bold and print the heading below the drawing in guiding lines 5mm apart

TRIANGLE

24

Chapter 3: TRIANGLES

3.9 TRIANGLE SIMILAR TO ANOTHER TRIANGLE BUT WITH A DIFFERENT PERIMETER


Example:

STEP 1

Construct a triangle of altitude 40mm and base angles 60° and 45° and then draw a similar triangle with a perimeter of 140mm

STEP 2

With the compas at A radius AC, draw an arc

An illustrated approach to TECHNICAL DRAWING - Book 1

Practice Questions:

1.a) Construct a triangle with a base measuring 62mm, altitude of 50mm and a vertical angle of 60°.

b) Draw a triangle similar that in 1(a) but with a perimeter 250mm.

2. Construct a triangle with a perimeter of 130mm, and sides in a ratio 2:3:4 and draw a similar one with a